Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)One of the most exciting areas of research in quantum condensed matter physics is the push to create topologically protected qubits using non-Abelian anyons. The focus of these efforts has been Majorana zero modes (MZMs), which are predicted to emerge as localized zero-energy states at the ends of 1D topological superconductors. A key role in the search for experimental signatures of these quasiparticles has been played by the scanning tunnelling microscope (STM). The power of high-resolution STM techniques is perhaps best illustrated by their application in identifying MZMs in 1D chains of magnetic atoms on the surface of a superconductor. In this platform, STM spectroscopic mapping has demonstrated the localized nature of MZM zero-energy excitations at the ends of such chains, and experiments with superconducting and magnetic STM tips have been used to uniquely distinguish them from trivial edge modes. Beyond the atomic chains, STM has also uncovered signatures of MZMs in 2D materials and topological surface and boundary states, when they are subjected to the superconducting proximity effect. Looking ahead, future STM experiments may be able to demonstrate the non-Abelian statistics of MZMs.more » « less
-
Abstract Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue towards manipulating non-Abelian excitations. Early theoretical studies 1–7 have predicted their existence in systems with flat Chern bands and highlighted the critical role of a particular quantum geometry. However, FCI states have been observed only in Bernal-stacked bilayer graphene (BLG) aligned with hexagonal boron nitride (hBN) 8 , in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field. By contrast, magic-angle twisted BLG 9–12 supports flat Chern bands at zero magnetic field 13–17 , and therefore offers a promising route towards stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in magic-angle twisted BLG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically trivial charge density wave states. We demonstrate that, unlike the case of the BLG/hBN platform, the principal role of the weak magnetic field is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum geometry favourable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in flat moiré Chern bands.more » « less
-
The boundary modes of topological insulators are protected by the symmetries of the nontrivial bulk electronic states. Unless these symmetries are broken, they can give rise to novel phenomena, such as the quantum spin Hall effect in one-dimensional (1D) topological edge states, where quasiparticle backscattering is suppressed by time-reversal symmetry (TRS). Here, we investigate the properties of the 1D topological edge state of bismuth in the absence of TRS, where backscattering is predicted to occur. Using spectroscopic imaging and spin-polarized measurements with a scanning tunneling microscope, we compared quasiparticle interference (QPI) occurring in the edge state of a pristine bismuth bilayer with that occurring in the edge state of a bilayer, which is terminated by ferromagnetic iron clusters that break TRS. Our experiments on the decorated bilayer edge reveal an additional QPI branch, which can be associated with spin-flip scattering across the Brioullin zone center between time-reversal band partners. The observed QPI characteristics exactly match with theoretical expectations for a topological edge state, having one Kramer’s pair of bands. Together, our results provide further evidence for the nontrivial nature of bismuth and in particular, demonstrate backscattering inside a helical topological edge state induced by broken TRS through local magnetism.more » « less
-
null (Ed.)Superconducting proximity pairing in helical edge modes, such as those of topological insulators, is predicted to provide a unique platform for realizing Majorana zero modes (MZMs). We used scanning tunneling microscopy measurements to probe the influence of proximity-induced superconductivity and magnetism on the helical hinge states of bismuth(111) films grown on a superconducting niobium substrate and decorated with magnetic iron clusters. Consistent with model calculations, our measurements revealed the emergence of a localized MZM at the interface between the superconducting helical edge channel and the iron clusters, with a strong magnetization component along the edge. Our experiments also resolve the MZM’s spin signature, which distinguishes it from trivial in-gap states that may accidentally occur at zero energy in a superconductor.more » « less
An official website of the United States government
